Mycobacterial trehalose dimycolate reprograms macrophage global gene expression and activates matrix metalloproteinases.
نویسندگان
چکیده
Trehalose 6,6'-dimycolate (TDM) is a cell wall glycolipid and an important virulence factor of mycobacteria. In order to study the role of TDM in the innate immune response to Mycobacterium tuberculosis, microarray analysis was used to examine gene regulation in murine bone marrow-derived macrophages in response to 90-μm-diameter polystyrene microspheres coated with TDM. A large number of genes, particularly those involved in the immune response and macrophage function, were up- or downregulated in response to these TDM-coated beads compared to control beads. Genes involved in the immune response were specifically upregulated in a myeloid differentiation primary response gene 88 (MyD88)-dependent manner. The complexity of the transcriptional response also increased greatly between 2 and 24 h. Matrix metalloproteinases (MMPs) were significantly upregulated at both time points, and this was confirmed by quantitative real-time reverse transcription-PCR (RT-PCR). Using an in vivo Matrigel granuloma model, the presence and activity of MMP-9 were examined by immunohistochemistry and in situ zymography (ISZ), respectively. We found that TDM-coated beads induced MMP-9 expression and activity in Matrigel granulomas. Macrophages were primarily responsible for MMP-9 expression, as granulomas from neutrophil-depleted mice showed staining patterns similar to that for wild-type mice. The relevance of these observations to human disease is supported by the similar induction of MMP-9 in human caseous tuberculosis (TB) granulomas. Given that MMPs likely play an important role in both the construction and breakdown of tuberculous granulomas, our results suggest that TDM may drive MMP expression during TB pathogenesis.
منابع مشابه
Cutting edge: Mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate.
The mycobacterial cord factor trehalose-6,6-dimycolate (TDM) and its synthetic analog trehalose-6,6-dibehenate (TDB) are potent adjuvants for Th1/Th17 vaccination that activate Syk-Card9 signaling in APCs. In this study, we have further investigated the molecular mechanism of innate immune activation by TDM and TDB. The Syk-coupling adapter protein FcRgamma was essential for macrophage activati...
متن کاملMouse Mincle: Characterization as a Model for Human Mincle and Evolutionary Implications
Mincle, the macrophage-inducible C-type lectin also known as CLEC-4E, binds to the mycobacterial glycolipid trehalose dimycolate and initiates a signaling cascade by serving as a receptor for Mycobacterium tuberculosis and other pathogenic mycobacterial species. Studies of the biological functions of human mincle often rely on mouse models, based on the assumption that the biological properties...
متن کاملCharacterization of the Receptors for Mycobacterial Cord Factor in Guinea Pig
Guinea pig is a widely used animal for research and development of tuberculosis vaccines, since its pathological disease process is similar to that present in humans. We have previously reported that two C-type lectin receptors, Mincle (macrophage inducible C-type lectin, also called Clec4e) and MCL (macrophage C-type lectin, also called Clec4d), recognize the mycobacterial cord factor, trehalo...
متن کاملDifferential Control of Mincle-Dependent Cord Factor Recognition and Macrophage Responses by the Transcription Factors C/EBPb and HIF1a
Trehalose-6,6-dimycolate (TDM), the mycobacterial cord factor, and its synthetic analog Trehalose-6,6-dibehenate (TDB) bind to the C-type lectin receptors macrophage-inducible C-type lectin (Mincle) and Mcl to activate macrophages. Genetically, the tran-scriptional response to TDB/TDM has been defined to require FcRg-Syk-Card9 signaling. However, TDB/TDM-triggered kinase activation has not been...
متن کاملDefining the conformation of human mincle that interacts with mycobacterial trehalose dimycolate
Trehalose dimycolate, an unusual glycolipid in the outer membrane of Mycobacterium tuberculosis, stimulates macrophages by binding to the macrophage receptor mincle. This stimulation plays an important role both in infection by mycobacteria and in the use of derivatives of mycobacteria as adjuvants to enhance the immune response. The mechanism of trehalose dimycolate binding to the C-type carbo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 81 3 شماره
صفحات -
تاریخ انتشار 2013